ICT285 Assignment 1 : 33170193 (student ID) Jin Cherng Chong
Assumption:
e The date attribute is in string “DD/MM/YYYY” format.

1a)

RESTRICT City = ‘Perth’ (CUSTOMER) - T1

PROJECT FirstName, LastName (T1) = Solution

1b)

RESTRICT Date = ‘01/08/2020’ (INVOICE) - T1

T1* T1.CustID = CUSTOMER.CustID CUSTOMER - T2

PROJECT FirstName, LastName (T2) = Solution

1c)

RESTRICT ItemName = ‘Back Scratchers’ (ITEM) - T1

PROJECT UnitPrice (T1) = Solution

1d)

RESTRICT ItemName = ‘Back Scratchers’ (ITEM) = T1

RESTRICT Quantity > 10 (INVOICE_ITEM) = T2

T2* temNumber.T2 = T1.ltemNumber T1 = T3

INVOICE* INVOICE.CustID = CUSTOMER.CustID CUSTOMER - T4

T4* InvoiceNumber.T4 = T3.InvoiceNumber T3 = T5

PROJECT FirstName, LastName (T5) = SOLUTION

le)

RESTRICT FirstName = ‘Peter’ AND LastName = ‘Simpson’ (CUSTOMER)-> T1

RESTRICT Date = ‘01/08/2020’ (INVOICE) > T2

T2* CustID.T2 = T1.CustID (T1) > T3

INVOICE_ITEM* INVOICE_ITEM.ltemNumber = ITEM.ltemNumber ITEM = T4

T4* T4.InvoiceNumber = T3.InvoiceNumber (T3) = Final

PROJECT ItemName, Quantity (Final) > SOLUTION

1)

RESTRICT FirstName = ‘Homer’ AND LastName = ‘Griffin’ (CUSTOMER) = T1

INVOICE* INVOICE.CustID = T1.CustID T1 >T2

PROJECT Date (T2) - Solution

1g)

RESTRICT ItemName = ‘Back Scratcher’ (ITEM) 2 T1

INVOICE_ITEM* INVOICE_ITEM.ltemNumber = T1.ItemNumber T1 - T2
T2* T2.InvoiceNumber = INVOICE.InvoiceNumber INVOICE = T3

T3* T3.CustID = CUSTOMER.CustID CUSTOMER - T4

PROJECT FirstName, LastName (T4) = Finall

RESTRICT ItemName = ‘Hair Remover’ (ITEM) =2 T5

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T5.ltemNumber T5 2 T6
T6* T6.InvoiceNumber = INVOICE.InvoceNumber INVOICE - T7

T8* T8.CustID = CUSTOMER.CustID CUSTOMER - T8

PROJECT FirstName, LastName (T8) = Final2

Finall OR Final2 = Solution

1h)

RESTRICT ItemName = ‘Back Scratcher’ (ITEM) 2> T1

INVOICE_ITEM* INVOICE_ITEM.ltemNumber = T1.ltemNumber T1 - T2
T2* T2.InvoiceNumber = INVOICE.InvoiceNumber INVOICE - T3

T3* T3.CustID = CUSTOMER.CustID CUSTOMER - T4

PROJECT FirstName, LastName (T4) = Finall

RESTRICT ItemName = ‘Hair Remover’ (ITEM) = T5

INVOICE_ITEM* INVOICE_ITEM.ltemNumber = T5.ltemNumber T5 - T6
T6* T6.InvoiceNumber = INVOICE.InvoceNumber INVOICE - T7

T8* T8.CustID = CUSTOMER.CustID CUSTOMER - T8

PROJECT FirstName, LastName (T8) = Final2

Finall MINUS Final2 = Solution

1i)

RESTRICT ItemName = ‘Back Scratcher’ (ITEM) 2 T1

INVOICE_ITEM* INVOICE_ITEM.ltemNumber = T1.ltemNumber T1 - T2
T2* T2.InvoiceNumber = INVOICE.InvoiceNumber INVOICE - T3

T3* T3.CustID = CUSTOMER.CustID CUSTOMER - T4

PROJECT FirstName, LastName (T4) = Finall

RESTRICT ItemName = ‘Hair Remover’ (ITEM) = T5

INVOICE_ITEM* INVOICE_ITEM.ltemNumber = T5.ltemNumber T5 > T6
T6* T6.InvoiceNumber = INVOICE.InvoiceNumber INVOICE - T7

T7* T7.CustID = CUSTOMER.CustID CUSTOMER - T8

PROJECT FirstName, LastName (T8) = Final2

Finall AND Final2 = Solution

INVOICE* INVOICE.CustID = CUSTOMER.CustID CUSTOMER - T1
T1 LEFT OUTER JOIN T1.InvoiceNumber = INVOICE_ITEM.InvoiceNumber INVOICE_ITEM = T2
ITEM LEFT OUTER JOIN ITEM.ltemNumber = T2.InvoiceNumber T2 2 T3

PROJECT FirstName, LastName, ItemNumber (T3) = Finall

PROJECT ItemNumber (ITEM) = Final2

Finall DIVIDEBY Final2 = Solution

Assume every single workID must have a TransactionID. Any work that doesn’t have a transactionID
will be considered

2a)

SELECT WORKID, TITLE, COPY, MEDIUM, DESCRIPTION, FIRSTNAME || "' || LASTNAME AS
FULLNAME

FROM dtoohey.WORK, dtoohey.ARTIST
WHERE WORK.ARTISTID = ARTIST.ARTISTID

AND DESCRIPTION LIKE '%Surrealist%';

{ worsa [{} TmLe [copy [{ mEDIUM [{} pEscriPTION [PuLLreame
i 521 The Tilled Field TE88/1000 High Quality Limited Print Early Surrealist style Joan Miro
2 5221a Lecon de Ski 353/500 High Quality Limited Print Surrealist style Joan Miro

2b)

SELECT WORK.WORKID, TITLE, COPY, MEDIUM, DESCRIPTION, FIRSTNAME || '' || LASTNAME AS
FULLNAME, ACQUISITIONPRICE, ASKINGPRICE

FROM dtoohey.TRANS, dtoohey.WORK, dtoohey.ARTIST
WHERE TRANS.WORKID = WORK.WORKID

AND WORK.ARTISTID = ARTIST.ARTISTID

AND ASKINGPRICE > 400

AND DATESOLD IS NULL;

[coer 2 weDm [escrepTIon [Purave [acquisrrionerice [{ askincerice
1147500 High Quality Limited Print Horthwest School Abstract Expressicnist style Mark Tobey 250 500
268/500 High Quality Li: Nox est School Abs:] yle Mark Tobey 250 500
366/500 High Qualic H chool Exp: ¥or; e 250 s00
365/500 High Qualic: N chool Exp: ¥or; 250 s00
362/500 High Quality Limited Print Northwest School Expressionist style ¥or; 250 s00
Tniqus Gomscne 26.5 x 26.75 in. - Signed o 25000 s0000
362/500 High Qualicy Limited Print Northwest School Expressionist style Mor: 250 500

2¢)

SELECT TITLE
FROM dtoohey.WORK
GROUP BY TITLE

HAVING COUNT(TITLE) = 2;

{TIMLE
1 Farmer's Markst #2
2 The Fiddler

2d)

SELECT FIRSTNAME || "' || LASTNAME AS FULLNAME, DATEDECEASED - DATEOFBIRTH AS
AGEOFDEATH

FROM dtoohey.ARTIST

WHERE DATEDECEASED IS NOT NULL;

{ FULLNAME |{: AGEOFDEATH
1 Joan Miro a0
2 Waszsily Kandinaky 78
3 Paul Klee 6l
4 Henri Matisse 85
3 Marc Chagall a3
6 John Singer Sargent (]
7 Mark Tobey 86
& Paul Horiuchi 93
9 Morris Graves g1
10 Bloxham Smythe Julio 21

2e)

SELECT FIRSTNAME || "' | | LASTNAME As FullName, count(*) As NumberOfArt
FROM dtoohey.WORK, dtoohey.ARTIST

WHERE WORK.ARTISTID = ARTIST.ARTISTID

GROUP BY FIRSTNAME || "' || LASTNAME

ORDER BY NumberOfArt asc;

{t FULLNAME { NUMBEROFART
1 Paul Klee 1
2 Wassily Kandinsky 2
3 Henri Matisse 2
4 Joan Miro 2
3 Marc Chagall 3
6 John Singer Sargent 4
7 Paul Horiuchi 4
8 Mark Tobey]
9 Morris Graves]
2f)
SELECT WORK.WORKID, TITLE, FIRSTNAME || "' | | LASTNAME AS FULLNAME

FROM dtoohey.WORK, dtoohey.TRANS, dtoohey.artist
WHERE TRANS.WORKID = WORK.WORKID
AND WORK.ARTISTID = ARTIST.ARTISTID
AND SALESPRICE > ACQUISITIONPRICE
AND SALESPRICE >
(SELECT AVG(SALESPRICE)

FROM dtoohey.TRANS);

{: workm | TmLe |4 FULLNAME
1 500 Memories IV Paul Horiuchi
2 500 Memories IV Paul Horiuchi
3 542 Night Bird Morris Graves
4 56l Sunflower Morris Graves
5 570 Untitled Number 1 Mark Tobey
6 571 Tellow Covers Blue Paul Horiuchi

2g)

SELECT extract(YEAR FROM DATESOLD) as YEAR, SUM(SALESPRICE) as YearSale, count(extract(YEAR
FROM DATESOLD)) AS NUMSOLD

FROM dtoohey.TRANS
Group by extract(YEAR FROM DATESOLD)

HAVING extract(YEAR FROM DATESOLD) IS NOT NULL;

& 5) 3 5oL | alRows Fetched: 6in 0,028 seconds
{} YEAR |{} YEARSALE |{; NUMSOLD |

1 20049 180575 10
2 2010 11550 3
3 2007 43000 2
4 2011 473 1
5 2008 32050 g
6 2012 350 1

2h)

SELECT ARTISTID, Count(Artistld) AS workSold
FROM dtoohey.WORK, dtoohey. TRANS

WHERE TRANS.WORKID = WORK.WORKID

GROUP BY ARTISTID
ORDER BY Count(Artistld) DESC

FETCH FIRST 1 ROWS ONLY;

o = Wi o oL HILFOWS FELWNEU; L u,uus &

{t ARTISTID |:5} WORKSOLD
1 17 g

2))

SELECT FIRSTNAME || "' || LASTNAME AS FULLNAME
FROM dtoohey.CUSTOMER
WHERE NOT EXISTS
(SELECT *
FROM dtoohey.ARTIST
WHERE NOT EXISTS
(SELECT *
FROM dtoohey.CUSTOMER_ARTIST_INT
WHERE CUSTOMER_ARTIST_INT.CUSTOMERID = CUSTOMER.CUSTOMERID

AND CUSTOMER_ARTIST_INT.ARTISTID = ARTIST.ARTISTID));

@ 5) 3% SOL | Al Rows Fetched: 1in 0.022 seconds

{ FULLNAME
1 David Smith

3a)

CREATE TABLE PRESENTER (
PresenterNo NUMBER(9),

PresenterName VARCHAR2(20) NOT NULL,

Biography VARCHAR2(20) NOT NULL,
InstitutionName VARCHAR2(35) NOT NULL,

CONSTRAINT PresenterPK PRIMARY KEY(PresenterNo)

Hame Hullz? Type
FRESENTERNO NOT HULL NUMBER (%)
FRESENTERNAME NOT NULL VARCHRRZ (20}
BIOGRAPHY NOT NULL VARCHRRZ (20}
INSTITUTICONMAME HNOT NULL VARCHRRZ (35)

3b)

CREATE TABLE LECTURE (
LectureNo NUMBER(15),
LectureName VARCHAR2(20) NOT NULL,
Description VARCHAR2(50) NOT NULL,
Theme VARCHAR2(40) NOT NULL,
Capacity NUMBER(3) NOT NULL,
DateAndTime DATE NOT NULL,
PresenterNo NUMBER(9),
CONSTRAINT LecturePK PRIMARY KEY(LectureNo),
CONSTRAINT LecturePresenterFK FOREIGN KEY(PresenterNo)
REFERENCES PRESENTER(PresenterNo)

ON DELETE CASCADE);

LECTUREND NOT NULL NUMBER({15)
LECTURENAME HNOT WULL VARCHARZ (20}
DESCRIPTICN NOT WULL VARCHARZ (50}
THEME NOT NULL VARCHRZRZ2 (40}
CAPRCITY NOT HULL NUMEBER (3)
DATEANDTIME NOT NULL DATE
FRESENTERNO NUMBER {4)

3¢)

INSERT INTO PRESENTER(PresenterNo, PresenterName, Biography, InstitutionName)

VALUES (1, 'Jin Chong', 'A Kmart employee', 'Murdoch University');

{} PRESENTERNO |{} PRESENTERNAME |{} BIOGRAPHY |{} INSTITUTIONNAME

1 1 Jin Chong B Emart employeese Murdoch University

3d)

ALTER TABLE LECTURE

ADD VenueName VARCHAR2(10);

LECTUREND NOT NULL NUMBER({13)
LECTURENAME NOT NULL VARCHIZRZ (20}
DESCRIPTICN HNOT WULL VARCHARZ (50}
THEME NOT NULL VARCHRRZ (40}
CRPRCITY NOT HULL NUMBER {3}
DATEANDTIME NOT NULL DATE
FEESENTERNO NUMBER {5)
VENUENAME VARCHRR2 (10)

ALTER TABLE LECTURE
ADD CONSTRAINT VenueNameCheck

CHECK (VenueName IN('Building A','Building B','Building C'));

Proof Constraint is added:

SELECT * FROM User_constraints

{ OWNER _[{} CONSTRAINT_NAME [consTRAINT_TvPE [{} TABLE NAME SEARCH_CONDITION [searcH_conprmion_ve [R_OWNER [{} R_CONSTRAINT_NaM
1WV33170193 LECTUREPRESENTERFK R LECTURE (null) (null) V331701%3 PRESENTERFK
2 V33170153 VENUENAMECHECK c LECTTRE. e T T R P et Bed] Venueliame IN('Building A", 'Building BY, 'Building C') (null) (mull)

=) ALUES (a a Math®, 40, To & 1, 'Jin Hot

[El script output % | [Query Resulr x
i 4 ﬂ 5] E El | Task completed in 0.096 seconds

*Cause:
*Action:
Name Nullz Type

LECTURENO NOT NULL NUMBER(15)
LECTURENEME NOT NULL VERCHERZ (20)
DESCRIPTION NOT NULL VARCHERZ (50)
THEME NOT NULL VERCHARZ (40}
CAPACITY NOT NULL NUMBER(3)
DATEANDTIME NCT NULL DATE
PRESENTERNO NUMBER (%)
VENUENAME VARCHARZ (10}

Table LECTURE altered.

Error starting at line : 153 in command -

INSERT INTO LECTURE(LecturelNo, LectureName, Description, Theme, Capacity, DateAndTime, Presenterlo, Venuelame)

VALUES {1, 'Maths Exam Tip', 'Exam about math', 'Math', 40, To_Date('01-09-2019 10:00:00', "DD-MM-YYYY HH24:MI:SS'), 1, 'Jin House')
Error report -

ORR-02290: check constraint (V33170153.VENUENAMECHECK) violated

3e)

§} LECTURENO |} LECTURENAME [{} DESCRIPTION |{ THEME |{} CAPACITY |{} DATEANDTIME |{} PRESENTERNO |} VENUENAME
1 1Maths Exam Tip Exam about math Math S0 01/5EB/19 1Building A
2 2English Exam Tip Exam akout English English 20 02/5EEB/189 1Building B

UPDATE lecture

SET Capacity = Capacity + 10;

= =m = —ew -

{} LECTURENO | {} LECTURENAME |{} DESCRIPTION |+ THEME [{} cAPACITY |{ DATEANDTIME | {; PRESENTERNO |} vENUENAME
1 1Maths Exam Tip Exam about math Math &0 01/5EEB/1% 1Building A
2 2English Exam Tip Exam akout English English 3002/5EB/1% 1Building B

43)

Assumption:

e A patient (patient ID) can’t have the same surgery (ltem Number) more than once from
same doctor (provider number)

Before any problems can be identified the primary key for the relation needs to be identified. We
assume the current primary key for the relation is:

PatientID, Item Number, Provider Number

Firstly, anomalies are problems that arise when changes are made to relations with redundant data.
In the current design, Insertion anomalies would arise when we want to add another Item in the
relation. For example, the addition of a new ltem: Medium (Item description) A016 (Item number) to
the relation would result in null values for the other attributes of the compound primary key. So
even though the attribute Item number is allocated a value A016, the other attributes in the key
such as Patient ID and provider number are null. Therefore, the entity integrity constraint is broken.
The entity integrity constraint specifies that the primary key value can’t be null.

Another potential problem that may arise with the current design is an update anomaly. For
example, an update to patient 437 (patient ID) date of birth from 4/08/1989 to 4/07/1989 in one
record would not update all the other instances of the same data as well. This leaves potential
inconsistencies with the data where a single person would have two different date of births, which
doesn’t make sense.

A third possible problem with current design is that it allows deletion anomalies to arise. A deletion
anomaly is where the deletion of other attributes causes certain needed attributes to be lost. In this
relation, a deletion to attribute A013 (Item Number) by provider S55768 will cause information

about patient Bilstein (Patient Name) to be lost as well. Since having a primary key attribute being
null is unacceptable

ab)

Direct dependencies (original design)-

Provider Number = Doctor Name (partial functional dependencies)
Patient ID - Patient Name, Patient DOB (partial functional dependencies)
Item Number = Item Description, Fee (partial functional dependencies)

Patient ID, Item Number, Provider Number (primary key) = Consult date

The current design is in first normal form meaning there is no repeating groups or nesting in the
relation. Also, there are partial functional dependencies as illustrated above. So, for example, Doctor
name, which is a non-primary key, is determined by provider number, which is only a part of primary
key. Therefore, through the progress of normalisation we convert the first normal form design to
second normal form design to remove some of the modification anomalies identified.

Relation1 (Provider Number, Doctor Name)

Relation2 (Patient ID, Patient Name, Patient DOB)
Relation3 (ltem Number, Item Description, Fee)

Relation4 (Patient ID, Item Number, Provider Number, Consult Date)

Legend = Primary key (underlined), Foreign key (bold)

The current design is now in at least second normal form meaning there are no partial function
dependencies. However, given there are no transitive functional dependencies as well, the design is
really in third normal form. A transitive functional dependency is where a non-key attribute is

determined by another non-key attribute. Since the new design is in third normal form the problems
associated with the previous design are resolved.

Firstly, with the new design there is no possibility that insertion anomalies can arise. For example,
the addition of a new item: Medium (ltem description) A016 (Iltem number) to the relation3 would
not result in the primary key attribute having a null value since relation3 has only a one attribute
primary key. So, adding a new item to relation3 would automatically result in the primary key being
not null.

Secondly, there is now no possibility that update anomalies can arise. For example, an update to
patient 437 (patient ID) date of birth from 4/08/1989 to 4/07/1989 in one record will now update all
instances of the data. The reason why is because relation3 will only have one instance (record) for
each patient, thus any updates to patient 437 will apply to essentially all the instances due to the
design.

Thirdly, the new design also addresses the issue of deletion anomalies arising. In the scenario where
attribute A013 (Item Number) is deleted in relation3 the only other attributes deleted are the ones
directly related to A013; so, Item description and fee would be deleted. The patient Bilstein
information would not be deleted as it is in a separate relation.

The set of relations for the new design also supports the lossless join property and dependency
preserving. The lossless join property allows the set of relations to be joined back together to get the
original relation. So, for relationl, relation2 and relation3 the primary key links to the foreign key in
relation4. In addition, the new design preserves all the functional dependencies found in the original
relation. Both the lossless join property and dependency preserving allow for a good design.

Assume

Assume customer can pay full amount of bill only

Assume customer does not want to pay in mix payments (i.e half through cash, and half
paypal)

Assume a WaterMeter for an address gets replaced every time a new customer is assigned
toit

Assume a bill is created immediately after a new customer is assigned a WaterMeter
Assume WaterMeter can have no customers assigned to it

Assume MeterReaders have to read at least one WaterMeter per month. Failure do so will
get them fired. If the MeterReader was to go on vacation they would no longer be employed
since they are employed as a casual

MeterReader

PK | MeterReaderlD

Drip Drip Water Company ERD

WaterMeterReading

PK,FK | WaterMeterlD

PK,FK | MeterReaderlD

WaterMeter

PK

WaterMeterlD

MeterReaderName H 4
Legend WaterReadingDate
ReadingAmount
gSEaiesEasy » Mandatory one to mandatory many cardinality (1:N) ES
Non-ldentifying relationship :
H——€ Mandatory one to mandatory many cardinality (1:N) §
Identifying relationship E
Mandatory one to mandatory one cardinality (1:1) :
TR T
Non-Identifying relationship Bill
PK | BillNo
PaymentMethod
T p Optional one to mandatory many cardinality (1:N)
GeneratedDate
Non-|dentifying relationship DateDue
PK = Primary Key DatePaid
FK = Foreign Key Amount
BillStatus
FK | MeterReaderlD
FK | WaterMeteriD
FK | CustomerNo

F

Y

DateOfLastReplacement
TotalWaterConsumed

Address
CustomerNo

T

Customer

PK

CustomerNo

CustomerName

CustomerClassification

