

ICT285 Assignment 1 : 33170193 (student ID) Jin Cherng Chong

Assumption:

 The date attribute is in string “DD/MM/YYYY” format.

1a)

RESTRICT City = ‘Perth’ (CUSTOMER)  T1

PROJECT FirstName, LastName (T1)  Solution

1b)

RESTRICT Date = ‘01/08/2020’ (INVOICE)  T1

T1* T1.CustID = CUSTOMER.CustID CUSTOMER  T2

PROJECT FirstName, LastName (T2)  Solution

1c)

RESTRICT ItemName = ‘Back Scratchers’ (ITEM)  T1

PROJECT UnitPrice (T1)  Solution

1d)

RESTRICT ItemName = ‘Back Scratchers’ (ITEM)  T1

RESTRICT Quantity > 10 (INVOICE_ITEM)  T2

T2* ItemNumber.T2 = T1.ItemNumber T1  T3

INVOICE* INVOICE.CustID = CUSTOMER.CustID CUSTOMER  T4

T4* InvoiceNumber.T4 = T3.InvoiceNumber T3  T5

PROJECT FirstName, LastName (T5)  SOLUTION

1e)

RESTRICT FirstName = ‘Peter’ AND LastName = ‘Simpson’ (CUSTOMER) T1

RESTRICT Date = ‘01/08/2020’ (INVOICE)  T2

T2* CustID.T2 = T1.CustID (T1)  T3

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = ITEM.ItemNumber ITEM  T4

T4* T4.InvoiceNumber = T3.InvoiceNumber (T3)  Final

PROJECT ItemName, Quantity (Final)  SOLUTION

1f)

RESTRICT FirstName = ‘Homer’ AND LastName = ‘Griffin’ (CUSTOMER)  T1

INVOICE* INVOICE.CustID = T1.CustID T1 T2

PROJECT Date (T2)  Solution

1g)

RESTRICT ItemName = ‘Back Scratcher’ (ITEM)  T1

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T1.ItemNumber T1  T2

T2* T2.InvoiceNumber = INVOICE.InvoiceNumber INVOICE  T3

T3* T3.CustID = CUSTOMER.CustID CUSTOMER  T4

PROJECT FirstName, LastName (T4)  Final1

RESTRICT ItemName = ‘Hair Remover’ (ITEM)  T5

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T5.ItemNumber T5  T6

T6* T6.InvoiceNumber = INVOICE.InvoceNumber INVOICE  T7

T8* T8.CustID = CUSTOMER.CustID CUSTOMER  T8

PROJECT FirstName, LastName (T8)  Final2

Final1 OR Final2  Solution

1h)

RESTRICT ItemName = ‘Back Scratcher’ (ITEM)  T1

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T1.ItemNumber T1  T2

T2* T2.InvoiceNumber = INVOICE.InvoiceNumber INVOICE  T3

T3* T3.CustID = CUSTOMER.CustID CUSTOMER  T4

PROJECT FirstName, LastName (T4)  Final1

RESTRICT ItemName = ‘Hair Remover’ (ITEM)  T5

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T5.ItemNumber T5  T6

T6* T6.InvoiceNumber = INVOICE.InvoceNumber INVOICE  T7

T8* T8.CustID = CUSTOMER.CustID CUSTOMER  T8

PROJECT FirstName, LastName (T8)  Final2

Final1 MINUS Final2  Solution

1i)

RESTRICT ItemName = ‘Back Scratcher’ (ITEM)  T1

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T1.ItemNumber T1  T2

T2* T2.InvoiceNumber = INVOICE.InvoiceNumber INVOICE  T3

T3* T3.CustID = CUSTOMER.CustID CUSTOMER  T4

PROJECT FirstName, LastName (T4)  Final1

RESTRICT ItemName = ‘Hair Remover’ (ITEM)  T5

INVOICE_ITEM* INVOICE_ITEM.ItemNumber = T5.ItemNumber T5  T6

T6* T6.InvoiceNumber = INVOICE.InvoiceNumber INVOICE  T7

T7* T7.CustID = CUSTOMER.CustID CUSTOMER  T8

PROJECT FirstName, LastName (T8)  Final2

Final1 AND Final2  Solution

Ij)

INVOICE* INVOICE.CustID = CUSTOMER.CustID CUSTOMER  T1

T1 LEFT OUTER JOIN T1.InvoiceNumber = INVOICE_ITEM.InvoiceNumber INVOICE_ITEM  T2

ITEM LEFT OUTER JOIN ITEM.ItemNumber = T2.InvoiceNumber T2  T3

PROJECT FirstName, LastName, ItemNumber (T3)  Final1

PROJECT ItemNumber (ITEM)  Final2

Final1 DIVIDEBY Final2  Solution

Assume every single workID must have a TransactionID. Any work that doesn’t have a transactionID

will be considered

2a)

SELECT WORKID, TITLE, COPY, MEDIUM, DESCRIPTION, FIRSTNAME || ' ' || LASTNAME AS

FULLNAME

FROM dtoohey.WORK, dtoohey.ARTIST

WHERE WORK.ARTISTID = ARTIST.ARTISTID

AND DESCRIPTION LIKE '%Surrealist%';

2b)

SELECT WORK.WORKID, TITLE, COPY, MEDIUM, DESCRIPTION, FIRSTNAME || ' ' || LASTNAME AS

FULLNAME, ACQUISITIONPRICE, ASKINGPRICE

FROM dtoohey.TRANS, dtoohey.WORK, dtoohey.ARTIST

WHERE TRANS.WORKID = WORK.WORKID

AND WORK.ARTISTID = ARTIST.ARTISTID

AND ASKINGPRICE > 400

AND DATESOLD IS NULL;

2c)

SELECT TITLE

FROM dtoohey.WORK

GROUP BY TITLE

HAVING COUNT(TITLE) = 2;

2d)

SELECT FIRSTNAME || ' ' || LASTNAME AS FULLNAME, DATEDECEASED - DATEOFBIRTH AS

AGEOFDEATH

FROM dtoohey.ARTIST

WHERE DATEDECEASED IS NOT NULL;

2e)

SELECT FIRSTNAME || ' ' || LASTNAME As FullName, count(*) As NumberOfArt

FROM dtoohey.WORK, dtoohey.ARTIST

WHERE WORK.ARTISTID = ARTIST.ARTISTID

GROUP BY FIRSTNAME || ' ' || LASTNAME

ORDER BY NumberOfArt asc;

2f)

SELECT WORK.WORKID, TITLE, FIRSTNAME || ' ' || LASTNAME AS FULLNAME

FROM dtoohey.WORK, dtoohey.TRANS, dtoohey.artist

WHERE TRANS.WORKID = WORK.WORKID

AND WORK.ARTISTID = ARTIST.ARTISTID

AND SALESPRICE > ACQUISITIONPRICE

AND SALESPRICE >

 (SELECT AVG(SALESPRICE)

 FROM dtoohey.TRANS);

2g)

SELECT extract(YEAR FROM DATESOLD) as YEAR, SUM(SALESPRICE) as YearSale, count(extract(YEAR

FROM DATESOLD)) AS NUMSOLD

FROM dtoohey.TRANS

Group by extract(YEAR FROM DATESOLD)

HAVING extract(YEAR FROM DATESOLD) IS NOT NULL;

2h)

SELECT ARTISTID, Count(ArtistId) AS workSold

FROM dtoohey.WORK, dtoohey.TRANS

WHERE TRANS.WORKID = WORK.WORKID

GROUP BY ARTISTID

ORDER BY Count(ArtistId) DESC

FETCH FIRST 1 ROWS ONLY;

2J)

SELECT FIRSTNAME || ' ' || LASTNAME AS FULLNAME

FROM dtoohey.CUSTOMER

WHERE NOT EXISTS

 (SELECT *

 FROM dtoohey.ARTIST

 WHERE NOT EXISTS

 (SELECT *

 FROM dtoohey.CUSTOMER_ARTIST_INT

 WHERE CUSTOMER_ARTIST_INT.CUSTOMERID = CUSTOMER.CUSTOMERID

 AND CUSTOMER_ARTIST_INT.ARTISTID = ARTIST.ARTISTID));

3a)

CREATE TABLE PRESENTER (

 PresenterNo NUMBER(9),

 PresenterName VARCHAR2(20) NOT NULL,

 Biography VARCHAR2(20) NOT NULL,

 InstitutionName VARCHAR2(35) NOT NULL,

 CONSTRAINT PresenterPK PRIMARY KEY(PresenterNo)

);

3b)

CREATE TABLE LECTURE (

 LectureNo NUMBER(15),

 LectureName VARCHAR2(20) NOT NULL,

 Description VARCHAR2(50) NOT NULL,

 Theme VARCHAR2(40) NOT NULL,

 Capacity NUMBER(3) NOT NULL,

 DateAndTime DATE NOT NULL,

 PresenterNo NUMBER(9),

 CONSTRAINT LecturePK PRIMARY KEY(LectureNo),

 CONSTRAINT LecturePresenterFK FOREIGN KEY(PresenterNo)

 REFERENCES PRESENTER(PresenterNo)

 ON DELETE CASCADE);

3c)

INSERT INTO PRESENTER(PresenterNo, PresenterName, Biography, InstitutionName)

VALUES (1, 'Jin Chong', 'A Kmart employee', 'Murdoch University');

3d)

ALTER TABLE LECTURE

ADD VenueName VARCHAR2(10);

ALTER TABLE LECTURE

ADD CONSTRAINT VenueNameCheck

CHECK (VenueName IN('Building A','Building B','Building C'));

Proof Constraint is added:

SELECT * FROM User_constraints

3e)

UPDATE lecture

SET Capacity = Capacity + 10;

4a)

Assumption:

 A patient (patient ID) can’t have the same surgery (Item Number) more than once from

same doctor (provider number)

Before any problems can be identified the primary key for the relation needs to be identified. We

assume the current primary key for the relation is:

PatientID, Item Number, Provider Number

Firstly, anomalies are problems that arise when changes are made to relations with redundant data.

In the current design, Insertion anomalies would arise when we want to add another Item in the

relation. For example, the addition of a new Item: Medium (Item description) A016 (Item number) to

the relation would result in null values for the other attributes of the compound primary key. So

even though the attribute Item number is allocated a value A016, the other attributes in the key

such as Patient ID and provider number are null. Therefore, the entity integrity constraint is broken.

The entity integrity constraint specifies that the primary key value can’t be null.

Another potential problem that may arise with the current design is an update anomaly. For

example, an update to patient 437 (patient ID) date of birth from 4/08/1989 to 4/07/1989 in one

record would not update all the other instances of the same data as well. This leaves potential

inconsistencies with the data where a single person would have two different date of births, which

doesn’t make sense.

A third possible problem with current design is that it allows deletion anomalies to arise. A deletion

anomaly is where the deletion of other attributes causes certain needed attributes to be lost. In this

relation, a deletion to attribute A013 (Item Number) by provider S55768 will cause information

about patient Bilstein (Patient Name) to be lost as well. Since having a primary key attribute being

null is unacceptable

4b)

Direct dependencies (original design)-

Provider Number  Doctor Name (partial functional dependencies)

Patient ID  Patient Name, Patient DOB (partial functional dependencies)

Item Number  Item Description, Fee (partial functional dependencies)

Patient ID, Item Number, Provider Number (primary key)  Consult date

The current design is in first normal form meaning there is no repeating groups or nesting in the

relation. Also, there are partial functional dependencies as illustrated above. So, for example, Doctor

name, which is a non-primary key, is determined by provider number, which is only a part of primary

key. Therefore, through the progress of normalisation we convert the first normal form design to

second normal form design to remove some of the modification anomalies identified.

Relation1 (Provider Number, Doctor Name)

Relation2 (Patient ID, Patient Name, Patient DOB)

Relation3 (Item Number, Item Description, Fee)

Relation4 (Patient ID, Item Number, Provider Number, Consult Date)

Legend  Primary key (underlined), Foreign key (bold)

The current design is now in at least second normal form meaning there are no partial function

dependencies. However, given there are no transitive functional dependencies as well, the design is

really in third normal form. A transitive functional dependency is where a non-key attribute is

determined by another non-key attribute. Since the new design is in third normal form the problems

associated with the previous design are resolved.

Firstly, with the new design there is no possibility that insertion anomalies can arise. For example,

the addition of a new item: Medium (Item description) A016 (Item number) to the relation3 would

not result in the primary key attribute having a null value since relation3 has only a one attribute

primary key. So, adding a new item to relation3 would automatically result in the primary key being

not null.

Secondly, there is now no possibility that update anomalies can arise. For example, an update to

patient 437 (patient ID) date of birth from 4/08/1989 to 4/07/1989 in one record will now update all

instances of the data. The reason why is because relation3 will only have one instance (record) for

each patient, thus any updates to patient 437 will apply to essentially all the instances due to the

design.

Thirdly, the new design also addresses the issue of deletion anomalies arising. In the scenario where

attribute A013 (Item Number) is deleted in relation3 the only other attributes deleted are the ones

directly related to A013; so, Item description and fee would be deleted. The patient Bilstein

information would not be deleted as it is in a separate relation.

The set of relations for the new design also supports the lossless join property and dependency

preserving. The lossless join property allows the set of relations to be joined back together to get the

original relation. So, for relation1, relation2 and relation3 the primary key links to the foreign key in

relation4. In addition, the new design preserves all the functional dependencies found in the original

relation. Both the lossless join property and dependency preserving allow for a good design.

5)

Assume

 Assume customer can pay full amount of bill only

 Assume customer does not want to pay in mix payments (i.e half through cash, and half

paypal)

 Assume a WaterMeter for an address gets replaced every time a new customer is assigned

to it

 Assume a bill is created immediately after a new customer is assigned a WaterMeter

 Assume WaterMeter can have no customers assigned to it

 Assume MeterReaders have to read at least one WaterMeter per month. Failure do so will

get them fired. If the MeterReader was to go on vacation they would no longer be employed

since they are employed as a casual

